首页 | 本学科首页   官方微博 | 高级检索  
     


Labels as features (not names) for infant categorization: a neurocomputational approach
Authors:Gliozzi Valentina  Mayor Julien  Hu Jon-Fan  Plunkett Kim
Affiliation:Department of Computer Science, University of Torino;
Department of Experimental Psychology, University of Oxford
Abstract:A substantial body of experimental evidence has demonstrated that labels have an impact on infant categorization processes. Yet little is known regarding the nature of the mechanisms by which this effect is achieved. We distinguish between two competing accounts: supervised name-based categorization and unsupervised feature-based categorization. We describe a neurocomputational model of infant visual categorization, based on self-organizing maps, that implements the unsupervised feature-based approach. The model successfully reproduces experiments demonstrating the impact of labeling on infant visual categorization reported in Plunkett, Hu, and Cohen (2008) . It mimics infant behavior in both the familiarization and testing phases of the procedure, using a training regime that involves only single presentations of each stimulus and using just 24 participant networks per experiment. The model predicts that the observed behavior in infants is due to a transient form of learning that might lead to the emergence of hierarchically organized categorical structure and that the impact of labels on categorization is influenced by the perceived similarity and the sequence in which the objects are presented. The results suggest that early in development, say before 12 months old, labels need not act as invitations to form categories nor highlight the commonalities between objects, but they may play a more mundane but nevertheless powerful role as additional features that are processed in the same fashion as other features that characterize objects and object categories.
Keywords:Self-organizing maps    Connectionist modeling    Categorization    Lexical development    Hierarchical structure    Word learning    Unsupervised learning
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号