首页 | 本学科首页   官方微博 | 高级检索  
     

四种新的基于属性平衡的CD-CAT选题策略开发研究
作者姓名:刘舒畅  涂冬波  蔡艳  赵洋
作者单位:江西师范大学
摘    要:基于属性平衡的CD-CAT选题策略能够保证每个认知属性被相当数量的题目测量,从而提高被试属性判准率,传统的基于属性平衡的选题策略包括MMGDI法和MGCDI法。本文针对传统的基于属性测量次数平衡选题策略进行改进,提出4种新的基于属性平衡的选题策略:RMGDI、RMCDI、SE-RMGDI、SE-RMCDI,前两种为基于属性测量次数平衡,后两种为基于属性测量精度平衡的选题策略。模拟研究表明:(1)定长CD-CAT条件下,短测验中,MMGDI表现最好,而长测验中,SE-RMGDI和SE-RMCDI的表现优于传统的属性平衡选题策略。(2)不定长CD-CAT条件下,RMGDI在判准率指标上表现优于传统的属性平衡选题策略,4种新的属性平衡策略在测量效率和综合指标上的表现均优于传统的选题策略。

关 键 词:CD-CAT  属性平衡  选题策略  GDINA模型  
收稿时间:2017-05-18
修稿时间:2017-11-10
本文献已被 CNKI 等数据库收录!
点击此处可从《心理科学》浏览原始摘要信息
点击此处可从《心理科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号