首页 | 本学科首页   官方微博 | 高级检索  
     


Laminar cortical dynamics of cognitive and motor working memory, sequence learning and performance: toward a unified theory of how the cerebral cortex works
Authors:Grossberg Stephen  Pearson Lance R
Affiliation:Department of Cognitive and Neural Systems, Boston University, Boston, MA 02215, USA. steve@bu.edu
Abstract:How does the brain carry out working memory storage, categorization, and voluntary performance of event sequences? The LIST PARSE neural model proposes an answer that unifies the explanation of cognitive, neurophysiological, and anatomical data. It quantitatively simulates human cognitive data about immediate serial recall and free recall, and monkey neurophysiological data from the prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The model clarifies why spatial and non-spatial working memories share the same type of circuit design. It proposes how laminar circuits of lateral prefrontal cortex carry out working memory storage of event sequences within layers 6 and 4, how these event sequences are unitized through learning into list chunks within layer 2/3, and how these stored sequences can be recalled at variable rates that are under volitional control by the basal ganglia. These laminar prefrontal circuits are variations of visual cortical circuits that explained data about how the brain sees. These examples from visual and prefrontal cortex illustrate how laminar neocortex can represent both spatial and temporal information, and open the way towards understanding how other behaviors derive from shared laminar neocortical designs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号