首页 | 本学科首页   官方微博 | 高级检索  
     


Positive-difference structures and bilinear utility functions
Authors:Ernst-Wilhelm Zachow
Affiliation:Institut für Mathematische Statistik, Roxeler Straße 64, D-4400 Münster, Federal Republic of Germany
Abstract:Let (M1, f), (M2, g) be mixture sets and let ? be a binary preference relation on M1 × M2. By using the concept of positive-difference structures, necessary and sufficient conditions are given for the existence of a real-valued utility function u on M1 × M2 which represents ? and possesses the bilinearity property
u(?(α, x1,x2),g(β, y1, y2))=αu(x1, g(βy1, y2))+(1 ? α) u(x2, g(β, y1, y2))=βu(?(α,x1, x2),y1)+(1 ? β) u(?(α,x1, x2),y2)
, for all α, β ∈ [0, 1], all x1, x2M1 and all y1, y2M2. Moreover, uniqueness up to positive linear transformations can be proved for those utility functions. Finally an outline is given of applications of these results in expected utility theory.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号