首页 | 本学科首页   官方微博 | 高级检索  
     


Detecting Multiple Random Changepoints in Bayesian Piecewise Growth Mixture Models
Authors:Eric F. Lock  Nidhi Kohli  Maitreyee Bose
Affiliation:1.Division of Biostatistics, School of Public Health,University of Minnesota,Minneapolis,USA;2.Department of Educational Psychology, College of Education and Human Development,University of Minnesota,Minneapolis,USA
Abstract:Piecewise growth mixture models are a flexible and useful class of methods for analyzing segmented trends in individual growth trajectory over time, where the individuals come from a mixture of two or more latent classes. These models allow each segment of the overall developmental process within each class to have a different functional form; examples include two linear phases of growth, or a quadratic phase followed by a linear phase. The changepoint (knot) is the time of transition from one developmental phase (segment) to another. Inferring the location of the changepoint(s) is often of practical interest, along with inference for other model parameters. A random changepoint allows for individual differences in the transition time within each class. The primary objectives of our study are as follows: (1) to develop a PGMM using a Bayesian inference approach that allows the estimation of multiple random changepoints within each class; (2) to develop a procedure to empirically detect the number of random changepoints within each class; and (3) to empirically investigate the bias and precision of the estimation of the model parameters, including the random changepoints, via a simulation study. We have developed the user-friendly package BayesianPGMM for R to facilitate the adoption of this methodology in practice, which is available at https://github.com/lockEF/BayesianPGMM. We describe an application to mouse-tracking data for a visual recognition task.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号