首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Finite axiomatization for some intermediate logics
Authors:I Janioka-Żuk
Institution:1. Institute of Mathematics, Pedagogical College, Kielce, Poland
Abstract:LetN. be the set of all natural numbers (except zero), and letD n * = {kNk|n} ∪ {0} wherek¦n if and only ifn=k.x f or somex∈N. Then, an ordered setD n * = 〈D n * , ? n , wherex? ny iffx¦y for anyx, y∈D n * , can easily be seen to be a pseudo-boolean algebra. In 5], V.A. Jankov has proved that the class of algebras {D n * n∈B}, whereB =,{kN∶ ? \(\mathop \exists \limits_{n \in N} \) (n > 1 ≧n 2 k)is finitely axiomatizable. The present paper aims at showing that the class of all algebras {D n * n∈B} is also finitely axiomatizable. First, we prove that an intermediate logic defined as follows: $$LD = Cn(INT \cup \{ p_3 \vee p_3 \to (p_1 \to p_2 ) \vee (p_2 \to p_1 )]\} )$$ finitely approximatizable. Then, defining, after Kripke, a model as a non-empty ordered setH = 〈K, ?〉, and making use of the set of formulas true in this model, we show that any finite strongly compact pseudo-boolean algebra ? is identical with. the set of formulas true in the Kripke modelH B = 〈P(?), ?〉 (whereP(?) stands for the family of all prime filters in the algebra ?). Furthermore, the concept of a structure of divisors is defined, and the structure is shown to beH D n * = 〈P (D n * ), ?〉for anyn∈N. Finally, it is proved that for any strongly compact pseudo-boolean algebraU satisfying the axiomp 3p 3→(p1→p2)∨(p2→p1)] there is a structure of divisorsD * n such that it is possible to define a strong homomorphism froomiH D n * ontoH D U . Exploiting, among others, this property, it turns out to be relatively easy to show that \(LD = \mathop \cap \limits_{n \in N} E(\mathfrak{D}_n^* )\) .
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号