首页 | 本学科首页   官方微博 | 高级检索  
     


On Categorical Equivalences of Commutative BCK-algebras
Authors:Dvurečenskij  Anatolij
Affiliation:(1) Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia
Abstract:A commutative BCK-algebra with the relative cancellation property is a commutative BCK-algebra (X;*,0) which satisfies the condition: if ax, ay and x * a = y * a, then x = y. Such BCK-algebras form a variety, and the category of these BCK-algebras is categorically equivalent to the category of Abelian ℓ-groups whose objects are pairs (G, G 0), where G is an Abelian ℓ-group, G 0 is a subset of the positive cone generating G + such that if u, vG 0, then 0 ∨ (u - v) ∈ G 0, and morphisms are ℓ-group homomorphisms h: (G, G 0) → (G′,G0) with f(G 0) ⫅ G0. Our methods in particular cases give known categorical equivalences of Cornish for conical BCK-algebras and of Mundici for bounded commutative BCK-algebras (= MV-algebras). This revised version was published online in June 2006 with corrections to the Cover Date.
Keywords:Commutative BCK-algebra with the relative cancellation property  lattice ordered group  universal group  categorical equivalence  MV-algebra  conical algebra  property (S)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号