首页 | 本学科首页   官方微博 | 高级检索  
     


Biclustering Models for Two-Mode Ordinal Data
Authors:Eleni Matechou  Ivy Liu  Daniel Fernández  Miguel Farias  Bergljot Gjelsvik
Affiliation:1.School of Mathematics, Statistics and Actuarial Science,University of Kent,Canterbury,UK;2.School of Mathematics and Statistics,Victoria University of Wellington,Wellington,New Zealand;3.Centre for Research in Psychology, Behaviour, & Achievement,Coventry University,Coventry,UK;4.Oxford Mindfulness Centre,University of Oxford,Oxford,UK;5.Department of Psychology,University of Oslo,Oslo,Norway
Abstract:The work in this paper introduces finite mixture models that can be used to simultaneously cluster the rows and columns of two-mode ordinal categorical response data, such as those resulting from Likert scale responses. We use the popular proportional odds parameterisation and propose models which provide insights into major patterns in the data. Model-fitting is performed using the EM algorithm, and a fuzzy allocation of rows and columns to corresponding clusters is obtained. The clustering ability of the models is evaluated in a simulation study and demonstrated using two real data sets.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号