首页 | 本学科首页   官方微博 | 高级检索  
     

图的典范装饰与方程组的典范解
引用本文:姚从军. 图的典范装饰与方程组的典范解[J]. 逻辑学研究, 2012, 5(2): 75-87
作者姓名:姚从军
作者单位:湖南科技学院思政部 中国社会科学院哲学研究所
基金项目:2012年国家社科基金项目(互模拟理论的逻辑研究)(12BZX060)
摘    要:在集合论ZFC-+AFA中,每个图有唯一装饰,每个方程组有唯一解。但是,在集合论ZFC-4-SAFA和ZFC-4-FAFA中,每个图并非只有一个装饰,每个方程组并非只有一个解。笔者通过定义互模拟坍塌概念,在可达点图的典范装饰概念的基础上导出方程组的典范解,提出并证明:在上述三种具体的非良基集合论中,每个可达点图都有唯一的典范装饰,每个方程组有唯一的典范解。

关 键 词:非良基公理  装饰  解引理  典范装饰  典范解

The Canonical Decoration of Graph and the Canonical Solution of Equational System
Congjun Yao. The Canonical Decoration of Graph and the Canonical Solution of Equational System[J]. Studies in Logic, 2012, 5(2): 75-87
Authors:Congjun Yao
Affiliation:Congjun Yao Department of Politics, Hunan University of Sicence and Engineering Institute of Philosophy, Chinese Academy of Social Sciences
Abstract:In ZFC AFA, every accessible point graph has unique decoration and every equational system has unique solution. However, it is not true in ZFC SAFA and ZFC FAFA. The author introduces the conception of bisimulation collapse, and defines the notion of canonical solution of equational system on the basis of the conception of canonical decoration of accessible point graph. Furthermore, the author puts forward and proves "in ZFC AFA , every accessible point graph has unique canonical decoration", "in ZFC AFA , every equational system has unique canonical solution".
Keywords:
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号