首页 | 本学科首页   官方微博 | 高级检索  
     


Implicit connectives of algebraizable logics
Authors:Xavier Caicedo
Affiliation:(1) Department of Mathematics, Universidad de los Andes, A.A. 4976 Bogotá, Colombia
Abstract:An extensions by new axioms and rules of an algebraizable logic in the sense of Blok and Pigozzi is not necessarily algebraizable if it involves new connective symbols, or it may be algebraizable in an essentially different way than the original logic. However, extension whose axioms and rules define implicitly the new connectives are algebraizable, via the same equivalence formulas and defining equations of the original logic, by enriched algebras of its equivalente quasivariety semantics. For certain strongly algebraizable logics, all connectives defined implicitly by axiomatic extensions of the logic are explicitly definable.Special issue of Studia Logica: ldquoAlgebraic Theory of Quasivarietiesrdquo Presented byM. E. Adams, K. V. Adaricheva, W. Dziobiak, and A. V. Kravchenko
Keywords:Algebraizable logics  quasivarieties  connectives  implicit and explicit definitions
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号