Developmental shifts in fMRI activations during visuospatial relational reasoning |
| |
Authors: | Eslinger Paul J Blair Clancy Wang JianLi Lipovsky Bryn Realmuto Jennifer Baker David Thorne Steven Gamson David Zimmerman Erin Rohrer Lisa Yang Qing X |
| |
Affiliation: | Department of Neurology (EC037), College of Medicine and Hershey Medical Center, The Pennsylvania State University, P.O. Box 850, Hershey, PA 17033, USA. peslinger@psu.edu |
| |
Abstract: | To investigate maturational plasticity of fluid cognition systems, functional brain imaging was undertaken in healthy 8-19 year old participants while completing visuospatial relational reasoning problems similar to Raven's matrices and current elementary grade math textbooks. Analyses revealed that visuospatial relational reasoning across this developmental age range recruited activations in the superior parietal cortices most prominently, the dorsolateral prefrontal, occipital-temporal, and premotor/supplementary cortices, the basal ganglia, and insula. There were comparable activity volumes in left and right hemispheres for nearly all of these regions. Regression analyses indicated increasing activity predominantly in the superior parietal lobes with developmental age. In contrast, multiple anterior neural systems showed significantly less activity with age, including dorsolateral and ventrolateral prefrontal, paracentral, and insula cortices bilaterally, basal ganglia, and particularly large clusters in the midline anterior cingulate/medial frontal cortex, left middle cingulate/supplementary motor cortex, left insula-putamen, and left caudate. Findings suggest that neuromaturational changes associated with visuospatial relational reasoning shift from a more widespread fronto-cingulate-striatal pattern in childhood to predominant parieto-frontal activation pattern in late adolescence. |
| |
Keywords: | Relational reasoning fMRI Developmental brain imaging Functional brain imaging Fluid intelligence Visuospatial problem solving Parietal lobe Frontal lobe Basal ganglia |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|