首页 | 本学科首页   官方微博 | 高级检索  
     


Using the Bollen-Stine Bootstrapping Method for Evaluating Approximate Fit Indices
Authors:Hanjoe Kim  Roger Millsap
Affiliation:1. Arizona State UniversityHanjoe.Kim@asu.edu;3. Arizona State University
Abstract:Accepting that a model will not exactly fit any empirical data, global approximate fit indices quantify the degree of misfit. Recent research (Chen, Curran, Bollen, Kirby, & Paxton, 2008) has shown that using fixed conventional cut-points for approximate fit indices can lead to decision errors. Instead of using fixed cut points for evaluating approximate fit indices, this study focuses on the meaning of approximate fit and introduces a new method to evaluate approximate fit indices. Millsap (2012) introduced a simulation-based method to evaluate approximate fit indices. A limitation of Millsap's (2012) work was that a rather strong assumption of multivariate normality was implied in generating simulation data. In this study, the Bollen-Stine bootstrapping procedure (Bollen & Stine, 1993) is proposed to supplement the former study. When data are nonnormal, the conclusions derived from Millsap's (2012) simulation method and the Bollen-Stine method can differ. Examples are given to illustrate the use of the Bollen-Stine bootstrapping procedure for evaluating the Root Mean Squared Error of Approximation (RMSEA). Comparisons are made with the simulation method. The results are discussed, and suggestions are given for the use of proposed method.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号