Abstract: | Exploratory factor analysis (EFA) is a commonly used statistical technique for examining the relationships between variables (e.g., items) and the factors (e.g., latent traits) they depict. There are several decisions that must be made when using EFA, with one of the more important being choice of the rotation criterion. This selection can be arduous given the numerous rotation criteria available and the lack of research/literature that compares their function and utility. Historically, researchers have chosen rotation criteria based on whether or not factors are correlated and have failed to consider other important aspects of their data. This study reviews several rotation criteria, demonstrates how they may perform with different factor pattern structures, and highlights for researchers subtle but important differences between each rotation criterion. The choice of rotation criterion is critical to ensure researchers make informed decisions as to when different rotation criteria may or may not be appropriate. The results suggest that depending on the rotation criterion selected and the complexity of the factor pattern matrix, the interpretation of the interfactor correlations and factor pattern loadings can vary substantially. Implications and future directions are discussed. |