首页 | 本学科首页   官方微博 | 高级检索  
     


Additive similarity trees
Authors:Shmuel Sattath  Prof. Amos Tversky
Affiliation:(1) Dept. of Psychology, The Hebrew University, Jerusalem, Israel
Abstract:Similarity data can be represented by additive trees. In this model, objects are represented by the external nodes of a tree, and the dissimilarity between objects is the length of the path joining them. The additive tree is less restrictive than the ultrametric tree, commonly known as the hierarchical clustering scheme. The two representations are characterized and compared. A computer program, ADDTREE, for the construction of additive trees is described and applied to several sets of data. A comparison of these results to the results of multidimensional scaling illustrates some empirical and theoretical advantages of tree representations over spatial representations of proximity data.We thank Nancy Henley and Vered Kraus for providing us with data, and Jan deLeeuw for calling our attention to relevant literature. The work of the first author was supported in part by the Psychology Unit of the Israel Defense Forces.
Keywords:proximity  clustering  multidimensional scaling
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号