首页 | 本学科首页   官方微博 | 高级检索  
     


Particle swarm optimised analysis of investment decision
Affiliation:1. Department of Computer Science and Engineering, MNM Jain Engineering College, Chennai, Tamil Nadu, India;2. Department of Information Technology, Adhiyamaan College of Engineering, Hosur, Tamil Nadu, India;1. Department of Mathematics, Shaanxi University of Science & Technology, Xi’an 710021, China;2. Department of Mathematics, Shanghai Maritime University, Shanghai 201306, China;3. Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA;4. Department of Mathematics, Obafemi Awolowo University, Ile Ife 220005, Nigeria
Abstract:A portfolio forecasting model based on particle swarm optimization (PSO) algorithm with automatic factor scaling is proposed in this Article to effectively improve the accuracy of related analysis model in portfolio application. Firstly, the portfolio problem is analyzed and a hybrid constraint portfolio model is obtained by improving portfolio model with consideration of general portfolio model and combination of market value constraint and upper bound constraint according to Markowitz's theory. Secondly, PSO algorithm is introduced during analysis on portfolio model and solution is found with the hybrid constraint portfolio model of PSO on portfolio. In addition, in order to further improve the performance of PSO in model solution, automatic factor scaling is used for adaptive learning on parameters associated with PSO, to improve convergence of the algorithm. At last, simulation experiments show that the algorithm proposed can obtain a more ideal investment portfolio scheme, thereby reducing investment risks and obtaining greater investment returns.
Keywords:Wealth effect  Consumer behavior  Individual investment  Decision analysis  PSO
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号