首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The neural pathways mediating quiet-biting attack behavior from the hypothalamus in the cat: A functional autoradiographic study
Authors:Susan A G Fuchs  Mario Dalsass  Heidi E Siegel  Allan Siegel
Abstract:Electrical stimulation of the region of the lateral hypothalamus produced a consistent form of quiet-biting attack behavior in cats. In one series of experiments, cats, implanted with electrodes from which attack had been elicited, were anesthetized and then were injected with a bolus of 14C-2-deoxyglucose at the same time as electrical stimulation was delivered through the attack electrodes. Brains prepared for X-ray autoradiography revealed that lateral hypothalamic stimulation activated the classical medial forebrain bundle pathway supplying the septal region, diagonal band, lateral preoptic area, and ventral tegmental region. Stimulation of quiet-attack sites in perifornical hypothalamus resulted in the activation of a much more extensive projection system which included the central and lateral tegmental fields of the midbrain and pons, and central gray region, as well as the structures described above. In a second series of experiments, 3H-leucine was placed into the region of the electrode tip from which attack was elicited in order to identify more precisely the pathways arising from that site. In general, tritiated amino acid radioautography replicated the 14C-2-deoxyglucose findings. In addition, the amino acid radioautographic data revealed the presence of extensive projections from perifornical hypothalamus to such pontine structures as the nucleus locus coeruleus, motor nucleus of NV , and the lateral pontine tegmental field. The functional connections between the lateral hypothalamic “attack region” and lateral preoptic zone were also confirmed by electrophysiological methods.
Keywords:quiet-biting attack  lateral hypothalamus  perifornical hypothalamus  ventral tegmentum  tegmental fields  motor nucleus of NV  14C-2-deoxyglucose  3H-leucine radioautography  electrical stimulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号