首页 | 本学科首页   官方微博 | 高级检索  
     


Intermediate logics with the same disjunctionless fragment as intuitionistic logic
Authors:Plerluigi Minari
Affiliation:(1) Department of Philosophy, University of Flore, Florence, Italy
Abstract:Given an intermediate prepositional logic L, denote by L–dits disjuctionless fragment. We introduce an infinite sequence {Jn}nges1 of propositional formulas, and prove:(1)For anyL: L–d=I–d (I=intuitionistic logic) if and only if Jnnotin Lfor every n ges 1.Since it turns out that Lcap{Jn}nges1 = Ø for any L having the disjunction property, we obtain as a corollary that L–d = I–d for every Lwith d.p. (cf. open problem 7.19 of [5]). Algebraic semantic is used in the proof of the ldquoifrdquo part of (1). In the last section of the paper we provide a characterization in Kripke's semantic for the logics Jn=I+ +Jn (n ges 1).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号