Observed attention allocation processes in category learning |
| |
Authors: | Matsuka Toshihiko Corter James E |
| |
Affiliation: | Howe School of Technology Management, Stevens Institute of Technology, Hoboken, NJ, USA. |
| |
Abstract: | In two empirical studies of attention allocation during category learning, we investigate the idea that category learners learn to allocate attention optimally across stimulus dimensions. We argue that "optimal" patterns of attention allocation are model or process specific, that human learners do not always optimize attention, and that one reason they fail to do so is that under certain conditions the cost of information retrieval or use may affect the attentional strategy adopted by learners. We empirically investigate these issues using a computer interface incorporating an "information-board" display that collects detailed information on participants' patterns of attention allocation and information search during learning trials. Experiment 1 investigated the effects on attention allocation of distributing perfectly diagnostic features across stimulus dimensions versus within one dimension. The overall pattern of viewing times supported the optimal attention allocation hypothesis, but a more detailed analysis produced evidence of instance- or category-specific attention allocation, a phenomenon not predicted by prominent computational models of category learning. Experiment 2 investigated the strategies adopted by category learners encountering redundant perfectly predictive cues. Here, the majority of participants learned to distribute attention optimally in a cost-benefit sense, allocating attention primarily to only one of the two perfectly predictive dimensions. These results suggest that learners may take situational costs and benefits into account, and they present challenges for computational models of learning that allocate attention by weighting stimulus dimensions. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|