Abstract: | Monosynaptic Hoffman reflexes (H reflexes) were recorded from the soleus muscle during the response latency of a warned reaction time (RT) task that required plantarflexion of the foot. The task was done under four conditions of predictability of the response signal (RS), created by the factorial combination of foreperiod duration (1 and 4 s) and variability (fixed and variable). RT varied systematically with RS predictability and was facilitated in conditions that favored prediction of the RS. The response latency was divided into two successive phases by the onset of reflex augmentation: a premotor phase of constant reflex amplitude and a succeeding motor phase marked by progressively increasing reflex amplitude. Reflex augmentation during the motor phase was coupled more closely to the imminent movement than to the preceding signal to respond. The duration of the premotor phase was unaffected by RS predictability, but the duration of the motor phase (like RT) was shorter when the RS was more predictable. The maximum H reflex amplitude reached during the motor phase was greater when the RS was more predictable. The tonic level of H reflex amplitude during the premotor phase was greater in conditions that made prediction of the RS difficult. A second experiment showed that this difference was present throughout the foreperiod.These results suggest that conditions that favor prediction of the RS enhance motor preparation. Changes in motor preparation (which affect RT) affect the processes underlying reflex augmentation in the motor phase. Enhanced preparation may allow more efficient organization of the descending commands to move, causing higher levels of spinal excitability to be reached in a briefer time. The higher tonic reflex amplitudes in the premotor phase and throughout the preceding foreperiod, in conditions that make prediction of the RS difficult, appear to reflect heightened general arousal. |