Abstract: | Wavelet analysis is presented as a new tool for analyzing event-related potentials (ERPs). The wavelet transform expands ERPs into a time-scale representation, which allows the analyst to zoom in on the small scale, fine structure details of an ERP or zoom out to examine the large scale, global waveshape. The timescale representation is closely related to the more familiar time-frequency representation used in spectrograms of time-varying signals. However, time-scale representations have special properties that make them attractive for many ERP applications. In particular, time-scale representations permit theoretically unlimited time resolution for the detection of short-lived peaks and permit a flexible choice of wavelet basis functions for analyzing different types of ERPs. Generally, time-scale representations offer a formal basis for designing new, specialized filters for various ERP applications. Among recently explored applications of wavelet analysis to ERPs are (a) the precise identification of the time of occurrence of overlapping peaks in the auditory brainstem evoked response; (b) the extraction of single-trial ERPs from background EEG noise; (c) the decomposition of averaged ERP waveforms into orthogonal detail functions that isolate the waveforms experimental behavior in distinct, orthogonal frequency bands; and (d) the use of wavelet transform coefficients to concisely extract important information from ERPs that predicts human signal detection performance. In this tutorial we present an intuitive introduction to wavelets and the wavelet transform, concentrating on the multiresolution approach to wavelet analysis of ERP data. We then illustrate this approach with real data. Finally,we offer some speculations on future applications of wavelet analysis to ERP data. |