首页 | 本学科首页   官方微博 | 高级检索  
     


Second order propositional operators over cantor space
Authors:Tomasz Połacik
Affiliation:(1) Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland
Abstract:We consider propositional operators defined by propositional quantification in intuitionistic logic. More specifically, we investigate the propositional operators of the formA* :p map existq(p equivA(q)) whereA(q) is one of the following formulae: (¬¬q rarrq) V ¬¬q, (¬¬q rarrq) rarr (¬¬q V ¬q), ((¬¬q rarrq) rarr (¬¬q V ¬q)) rarr ((¬¬q rarrq) V ¬¬q). The equivalence ofA*(p) to ¬¬p is proved over the standard topological interpretation of intuitionistic second order propositional logic over Cantor space.We relate topological interpretations of second order intuitionistic propositional logic over Cantor space with the interpretation of propositional quantifiers (as the strongest and weakest interpolant in Heyting calculus) suggested by A. Pitts. One of the merits of Pitts' interpretation is shown to be valid for the interpretation over Cantor space.Presented byJan Zygmunt
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号