首页 | 本学科首页   官方微博 | 高级检索  
   检索      


LTP in hippocampal area CA1 is induced by burst stimulation over a broad frequency range centered around delta
Authors:Lawrence M Grover  Eunyoung Kim  Jennifer D Cooke  William R Holmes
Institution:1.Department of Pharmacology, Physiology and Toxicology, Marshall University, School of Medicine, Huntington, West Virginia 25755, USA;;2.Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA
Abstract:Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100 msec to 20 sec (10 Hz to 0.05 Hz). LTP at Schaffer collateral–CA1 synapses was obtained at intervals from 100 msec to 5 sec, with maximal LTP at 350–500 msec (2–3 Hz, delta frequency). In addition, a short-duration potentiation was present over the entire range of burst intervals. We found that N-methyl-d-aspartic acid (NMDA) receptors were more important for LTP induction by burst stimulation, but L-type calcium channels were more important for LTP induction by continuous high-frequency stimulation. NMDA receptors were even more critical for short-duration potentiation than they were for LTP. We also compared repeated burst stimulation with a single primed burst. In contrast to results from repeated burst stimulation, primed burst potentiation was greater when a 200-msec interval (theta frequency) was used, and a 500-msec interval was ineffective. Whole-cell recordings of postsynaptic membrane potential during burst stimulation revealed two factors that may determine the interval dependence of LTP. First, excitatory postsynaptic potentials facilitated across bursts at 500-msec intervals but not 200-msec or 1-sec intervals. Second, synaptic inhibition was suppressed by burst stimulation at intervals between 200 msec and 1 sec. Our data show that CA1 synapses are more broadly tuned for potentiation than previously appreciated.Long-term potentiation (LTP) is used as a model for studying synaptic events during learning and memory (Bliss and Collingridge 1993; Morris 2003; Lynch 2004). At most synapses, LTP is triggered by postsynaptic Ca2+ influx through N-methyl-d-aspartic acid (NMDA) glutamate receptors (Collingridge et al. 1983; Harris et al. 1984; Herron et al. 1986) and, under some conditions, through L-type voltage-gated Ca2+ channels (Grover and Teyler 1990, 1994; Morgan and Teyler 1999). LTP was discovered in the dentate gyrus (Bliss and Lomo 1973) following several seconds of 10–100 Hz stimulation of the perforant path. Since then, many LTP studies have used similar long, high-frequency stimulation (HFS) protocols, most typically 100 Hz, 1 sec (Bliss and Collingridge 1993). Although effective, HFS does not resemble physiological patterns of activity (Albensi et al. 2007). Patterned stimulation resembling physiological activity, in particular theta burst stimulation, is also effective for LTP induction (Larson et al. 1986; Staubli and Lynch 1987; Capocchi et al. 1992; Nguyen and Kandel 1997). Theta burst stimulation consists of short bursts (4–5 stimuli at 100 Hz) repeated at 5 Hz, which lies within the hippocampal theta frequency range (4–12 Hz) (Bland 1986; Buzsáki 2002). Primed burst stimulation, another form of patterned stimulation, involves delivery of a priming stimulus followed by a single short burst (Larson and Lynch 1986; Rose and Dunwiddie 1986). The temporal requirements for primed burst LTP are quite precise (Diamond et al. 1988; Greenstein et al. 1988; Larson and Lynch 1989): Intervals less than 140 msec or greater than 200 msec are ineffective.The mechanisms underlying theta frequency-dependent LTP have been studied primarily using the primed burst protocol (Larson and Lynch 1986, 1988, 1989; Pacelli et al. 1989; Davies and Collingridge 1996). Activation of GABAB autoreceptors during the priming stimulus suppresses GABA release during the following burst (Davies et al. 1990; Lambert and Wilson 1994; Olpe et al. 1994), allowing greater postsynaptic depolarization (Larson and Lynch 1986; Pacelli et al. 1989) and more effective NMDA receptor activation (Davies and Collingridge 1996). Consequently, temporal requirements for primed burst potentiation match the time course of GABAB autoreceptor-mediated suppression of GABA release (Davies et al. 1990; Davies and Collingridge 1993; Mott et al. 1993).Besides theta, hippocampal activity is observed at other frequencies, notably sharp waves (0.01–5 Hz) (Buzsáki 1986, 1989; Suzuki and Smith 1987) and low-frequency oscillations (≤1 Hz) (Wolansky et al. 2006; Moroni et al. 2007). These lower frequencies dominate during slow wave sleep (Buzsáki 1986; Suzuki and Smith 1987; Wolansky et al. 2006; Moroni et al. 2007), and contribute to hippocampal memory processing (Buzsáki 1989; Pennartz et al. 2002). While synchronized population activity over frequencies from <1 Hz to 12 Hz is associated with hippocampal memory function, previous LTP studies have focused on theta. We therefore investigated burst stimulation at frequencies from 0.05 Hz to 10 Hz. We found that CA1 synapses potentiate to some degree over this entire range and that maximal potentiation occurs around delta frequency rather than theta.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号