首页 | 本学科首页   官方微博 | 高级检索  
     


Necessary Conditions for Mean Square Convergence of the Best Linear Factor Predictor
Authors:Wim P. Krijnen
Affiliation:(1) University of Amsterdam, Amsterdam
Abstract:Several sufficient conditions are available for mean square convergence of factor predictors. A necessary and sufficient condition is given in the Heywood case with respect to (confirmatory) factor analysis. This condition generalizes that of Krijnen (2006) and performs better than a signal-to-noise type of condition (Schneeweiss & Mathes, 1995). The author is obliged to the reviewers for their stimulating remarks. Requests for reprints should be sent to Department of Psychology, Psychological Methods, University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands.
Keywords:Heywood cases  constrained factor analysis  factor indeterminacy  common factor analysis  confirmatory factor analysis  true factor scores
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号