How to learn the natural numbers: inductive inference and the acquisition of number concepts |
| |
Authors: | Margolis Eric Laurence Stephen |
| |
Affiliation: | Department of Philosophy, University of Wisconsin, Madison WI 53706, USA. eamargolis@wisc.edu |
| |
Abstract: | Theories of number concepts often suppose that the natural numbers are acquired as children learn to count and as they draw an induction based on their interpretation of the first few count words. In a bold critique of this general approach, Rips, Asmuth, Bloomfield [Rips, L., Asmuth, J. & Bloomfield, A. (2006). Giving the boot to the bootstrap: How not to learn the natural numbers. Cognition, 101, B51-B60.] argue that such an inductive inference is consistent with a representational system that clearly does not express the natural numbers and that possession of the natural numbers requires further principles that make the inductive inference superfluous. We argue that their critique is unsuccessful. Provided that children have access to a suitable initial system of representation, the sort of inductive inference that Rips et al. call into question can in fact facilitate the acquisition of larger integer concepts without the addition of any further principles. |
| |
Keywords: | Number concept Induction Bootstrapping Number module Concept acquisition |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|