首页 | 本学科首页   官方微博 | 高级检索  
     


Frege,Boolos, and Logical Objects
Authors:Anderson  David J.  Zalta  Edward N.
Affiliation:(1) Stanford University, USA
Abstract:In this paper, the authors discuss Frege's theory of ldquological objectsrdquo (extensions, numbers, truth-values) and the recent attempts to rehabilitate it. We show that the lsquoetarsquo relation George Boolos deployed on Frege's behalf is similar, if not identical, to the encoding mode of predication that underlies the theory of abstract objects. Whereas Boolos accepted unrestricted Comprehension for Properties and used the lsquoetarsquo relation to assert the existence of logical objects under certain highly restricted conditions, the theory of abstract objects uses unrestricted Comprehension for Logical Objects and banishes encoding (eta) formulas from Comprehension for Properties. The relative mathematical and philosophical strengths of the two theories are discussed. Along the way, new results in the theory of abstract objects are described, involving: (a) the theory of extensions, (b) the theory of directions and shapes, and (c) the theory of truth values.
Keywords:abstract objects  extensions  George Boolos  Gottlob Frege  Hume's Principle  logical objects  numbers  object theory  second-order logic  truth values
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号