首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluating methods for approximating stochastic differential equations
Authors:Brown Scott D  Ratcliff Roger  Smith Philip L
Affiliation:a Department of Cognitive Science, University of California Irvine, CA 92697-5100, USA
b Ohio state University, USA
c University of Melbourne, Australia
Abstract:Models of decision making and response time (RT) are often formulated using stochastic differential equations (SDEs). Researchers often investigate these models using a simple Monte Carlo method based on Euler's method for solving ordinary differential equations. The accuracy of Euler's method is investigated and compared to the performance of more complex simulation methods. The more complex methods for solving SDEs yielded no improvement in accuracy over the Euler method. However, the matrix method proposed by Diederich and Busemeyer (2003) yielded significant improvements. The accuracy of all methods depended critically on the size of the approximating time step. The large (∼10 ms) step sizes often used by psychological researchers resulted in large and systematic errors in evaluating RT distributions.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号