首页 | 本学科首页   官方微博 | 高级检索  
     


Perceived object trajectories during occlusion constrain visual statistical learning
Authors:József Fiser  Brian J. Scholl  Richard N. Aslin
Affiliation:(1) Department of Brain and Cognitive Sciences, University of Rochester, 494 Meliora Hall, River Campus, 14627-0268 Rochester, NY
Abstract:Visual statistical learning of shape sequences was examined in the context of occluded object trajectories. In a learning phase, participants viewed a sequence of moving shapes whose trajectories and speed profiles elicited either a bouncing or a streaming percept: the sequences consisted of a shape moving toward and then passing behind an occluder, after which two different shapes emerged from behind the occluder. At issue was whether statistical learning linked both object transitions equally, or whether the percept of either bouncing or streaming constrained the association between pre- and postocclusion objects. In familiarity judgments following the learning, participants reliably selected the shape pair that conformed to the bouncing or streaming bias that was present during the learning phase. A follow-up experiment demonstrated that differential eye movements could not account for this finding. These results suggest that sequential statistical learning is constrained by the spatiotemporal perceptual biases that bind two shapes moving through occlusion, and that this constraint thus reduces the computational complexity of visual statistical learning.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号