Abstract: | The process of judging the relative order of stimuli in a visual array was investigated in three experiments. In the basic paradigm, a linear array of six colored lines was presented briefly, and subject decided which of two target lines was the leftmost or rightmost (Experiment 1). The target lines appeared in all possible combinations of serial positions and reaction time (RT) was measured. Distance and semantic congruity effects were obtained, as well as a bowed serial position function. The RT pattern resembled that observed in comparable studies with memorized linear orderings. The serial position function was flattened when the background lines were homogeneously dissimilar to the target lines (Experiment 2). Both a distance effect and bowed serial position functions were obtained when subjects judged which of two target lines was below a black bar cue (Experiment 3). The results favored and analog positional discriminability model over a serial ends-inward scanning model. The positional discriminability model was proposed as a "core model" for the processes involved in judging relative order or magnitude in the domains of memory and perception. |