Beyond quantity: Individual differences in working memory and the ordinal understanding of numerical symbols |
| |
Authors: | Ian M. Lyons |
| |
Affiliation: | Department of Psychology, 5848 South University Avenue, University of Chicago, Chicago, Illinois 60637, United States |
| |
Abstract: | In two different contexts, we examined the hypothesis that individual differences in working memory (WM) capacity are related to the tendency to infer complex, ordinal relationships between numerical symbols. In Experiment 1, we assessed whether this tendency arises in a learning context that involves mapping novel symbols to quantities by training adult participants to associate dot-quantities with novel symbols, the overall relative order of which had to be inferred. Performance was best for participants who were higher in WM capacity (HWMs). HWMs also learned ordinal information about the symbols that lower WM individuals (LWMs) did not. In Experiment 2, we examined whether WM relates to performance when participants are explicitly instructed to make numerical order judgments about highly enculturated numerical symbols by having participants indicate whether sets of three Arabic numerals were in increasing order. All participants responded faster when sequential sets (3-4-5) were in order than when they were not. However, only HWMs responded faster when non-sequential, patterned sets (1-3-5) were in order, suggesting they were accessing ordinal associations that LWMs were not. Taken together, these experiments indicate that WM capacity plays a key role in extending symbolic number representations beyond their quantity referents to include symbol-symbol ordinal associations, both in a learning context and in terms of explicitly accessing ordinal relationships in highly enculturated stimuli. |
| |
Keywords: | Numerical cognition Symbol learning Working memory Individual differences Ordinal processing Numerical symbols |
本文献已被 ScienceDirect 等数据库收录! |
|