首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Control of velocity and position in single joint movements
Authors:Mutha Pratik K  Sainburg Robert L
Institution:Department of Kinesiology, 29, Recreation Building, The Pennsylvania State University, University Park, PA 16802, USA.
Abstract:Previous research on single joint movements has lead to the development of models of control that propose that movement speed and distance are controlled through an initial pulsatile signal that can be modified in both amplitude and duration. However, the manner in which the amplitude and duration are modulated during the control of movement remains controversial. We now report two studies that were designed to differentiate the mechanisms used to control movement speed from those employed to control final position accuracy. In our first study, participants move at a series of speeds to a single spatial target. In this task, acceleration duration (pulse-width) varied substantially across speeds, and was negatively correlated with peak acceleration (pulse-height). In a second experiment, we removed the spatial target, but required movements at the three speeds similar to those used in the first study. In this task, acceleration amplitude varied extensively across the speed targets, while acceleration duration remained constant. Taken together, our current findings demonstrate that pulse-width measures can be modulated independently from pulse-height measures, and that a positive correlation between such measures is not obligatory, even when sampled across a range of movement speeds. In addition, our findings suggest that pulse-height modulation plays a primary role in controlling movement speed and specifying target distance, whereas pulse-width mechanisms are employed to correct errors in pulse-height control, as required to achieve spatial precision in final limb position.
Keywords:Pulse-step model  Trajectory control  Position control
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号