首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Antagonism of lateral amygdala alpha1-adrenergic receptors facilitates fear conditioning and long-term potentiation
Authors:Stephanie C Lazzaro  Mian Hou  Catarina Cunha  Joseph E LeDoux  Christopher K Cain
Institution:1.Center for Neural Science, New York University, New York, New York 10003, USA;2.Emotional Brain Institute at the Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA;3.Department of Child and Adolescent Psychiatry, New York University, New York, New York 10003, USA
Abstract:Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala terazosin delivered before conditioning enhanced short- and long-term memory. Terazosin delivered after conditioning did not affect consolidation. In vitro, terazosin impaired lateral amygdala inhibitory postsynaptic currents leading to facilitation of excitatory postsynaptic currents and long-term potentiation. Since alpha1 blockers are prescribed for hypertension and post-traumatic stress disorder, these results may have important clinical implications.Although norepinephrine (NE) has been widely studied as an important modulator of memory and emotion, comparatively little is known about the role of NE in amygdala-dependent Pavlovian fear conditioning, a major model for understanding the neural basis of fear learning and memory. In fear conditioning, an emotionally neutral conditioned stimulus (CS; i.e., tone) is temporally paired with an aversive unconditioned stimulus (US; i.e., footshock). After very few pairings, a lasting, robust CS–US association is acquired, and the CS elicits stereotypical defensive responses, including behavioral freezing (Blanchard and Blanchard 1969; Bolles and Fanselow 1980).The lateral nucleus of the amygdala (LA) is a key structure underlying fear conditioning (LeDoux 2000). Convergence of CS and US information in LA is believed to play an important role in initiating synaptic plasticity. Long-term potentiation (LTP)-like changes in LA CS processing are critical for fear memory storage (LeDoux 2000; Blair et al. 2001; Maren 2001; Walker and Davis 2002). LA receives auditory CS inputs from the thalamus and cortex and connects directly and indirectly with the central nucleus of the amygdala to control expression of Pavlovian fear responses.Of the noradrenergic receptor subtypes, alpha1 receptors have received the least attention in fear conditioning. LA receives NE-containing inputs from the locus coeruleus that fire tonically and phasically in response to aversive stimuli like footshock (Pitkänen 2000; Tanaka et al. 2000; Aston-Jones and Cohen 2005). Alpha1-adrenergic receptors are expressed in LA, most likely on both excitatory and inhibitory neurons (Jones et al. 1985; Domyancic and Morilak 1997). Alpha1 receptor activation stimulates GABA-mediated miniature inhibitory postsynaptic currents in LA (Braga et al. 2004), suggesting that alpha1 receptors contribute to inhibition in fear conditioning pathways. Several elegant experiments recently demonstrated that LA inhibition gates synaptic plasticity necessary for fear conditioning, and this inhibitory gate can be influenced by neuromodulators including NE (Stutzmann and LeDoux 1999; Shumyatsky et al. 2002; Bissière et al. 2003; Shaban et al. 2006; Shin et al. 2006; Tully et al. 2007). However, the role of alpha1 receptor activity in gating amygdala LTP and fear learning has never been examined.We hypothesized that alpha1 blockers would facilitate fear learning, possibly by impairing LA inhibition and facilitating LA LTP. To test this hypothesis, we injected rats with terazosin, a selective alpha1-adrenergic receptor antagonist, systemically or directly into LA before or after fear conditioning. We examined in vitro the effect of terazosin on LA pyramidal cell inhibitory postsynaptic currents (IPSCs) and excitatory postsynaptic currents (EPSCs) in response to fiber stimulation of the thalamic CS input pathway to LA, as well as the effect of terazosin on LA LTP in this same pathway. We found that intra-LA terazosin facilitated fear conditioning when injected before but not after training. We also found that terazosin impaired IPSCs in LA pyramidal cells, leading to facilitated EPSCs and LTP.Behavioral experiments were conducted on adult, male Sprague–Dawley rats (Hilltop Laboratory Animals) weighing approximately 300 g upon arrival. Rats were individually housed, maintained on a 12/12 h light/dark schedule, and allowed free access to food and water. Testing was conducted during the light phase. All procedures and experiments were approved by NYU''s Animal Care and Use Committee.For systemic injections, terazosin (20 mg/kg; Sigma) was dissolved in saline and injected intraperitoneally (i.p.) 30 min prior to conditioning in 1 mL/kg volume. For bilateral infusions, terazosin (125 ng/0.25 µL) was dissolved in aCSF and infused into the LA at 0.1 µL/min 30 min prior to or immediately after fear conditioning. Bilateral guide cannulae (22 gauge; Plastics One) aimed at LA (−3.3 mm anterior, 5.2 mm lateral, −7 mm dorsal to bregma) were surgically implanted as previously described (Sotres-Bayon et al. 2009). Rats were given at least 7 d to recover from surgery before testing. For infusions, dummy cannulae were removed, and infusion cannulae (28 gauge, +1 mm beyond guides) were inserted into guides. Infusion cannulae were connected to a 1.0 μL Hamilton syringe via polyethylene tubing. Infusion rate was controlled by a pump (PHD22/2000; Harvard Apparatus), and infusion cannulae were left in place for an additional 60 sec to allow diffusion of the solution away from the cannula tip, then dummy cannulae were replaced. Upon completion of the experiment, rats were euthanized, brains removed, and cannulae placements verified histologically as previously described (Sotres-Bayon et al. 2009).Two contexts (A and B) were used for all testing as previously described (Schiller et al. 2008). The grid floors in Context B were covered with black Plexiglas inserts to reduce generalization. No odors were used and chambers were cleaned between sessions. CSs were 30 sec, 5 kHz, 80 dB tones, and USs were 1 sec, 0.8 mA scrambled electric footshocks. Experiments consisted of two phases separated by 48 h: (1) fear conditioning in Context A and (2) long-term memory (LTM) test in Context B. On Day 1, rats were placed in Context A, allowed 5 min to acclimate, and then received three CS–US pairings separated by variable 5 min ITIs. On Day 3, rats were placed in Context B and allowed 5 min to acclimate before receiving one CS-alone presentation.The index of fear in behavioral experiments was “freezing,” the absence of all non-respiratory movement (Blanchard and Blanchard 1971; Fanselow 1980). Following testing, freezing was manually scored from DVDs by a scorer blind to group specification. Graphs represent group means ± SEM. Statistical analysis was conducted with GraphPad Prism.Whole-cell electrophysiological recordings were obtained from LA pyramidal cells using in vitro coronal slices from rats aged P21–P30 d as described in Cunha et al. (2010). Terazosin was bath-applied for 10 min to achieve stable responses before testing. The cells were voltage-clamped using an Axopatch 200B amplifier at −35 mV for recording EPSCs and IPSCs. Synaptic responses were evoked with sharpened tungsten bipolar stimulating electrodes. Internal capsule fibers containing thalamic afferents were stimulated for paired-pulse facilitation (PPF) (ISI = 50 msec; 0.1 Hz) using a photoelectric stimulus isolation unit with a constant current output. Cells were rejected if access resistance (8–26 MΩ) changed more than 15%. Signals were filtered at 2 kHz and digitized (Digidata 1440 A; Axon Instruments), and peak amplitude, 10%–90% rise time, and IPSC decay time constants were analyzed offline using pCLAMP10.2 software (Axon Instruments).Brain slices for LTP experiments were prepared from rats aged 3–5 wk as in Johnson et al. (2008) and maintained on an interface chamber at 31°C. Glass recording electrodes (filled with aCSF, 5 MΩ resistance) were guided to LA neurons. Bipolar stainless steel stimulating electrodes (75 kΩ) were positioned medial to LA in internal capsule fibers. Orthodromic synaptic potentials were evoked via an isolated current generator (Digitimer; 100 μsec pulses of 0.3–0.7 mA). Evoked field potentials were recorded with an Axoclamp 2B amplifier and Axon WCP software (Axon Instruments). Data were analyzed offline using WCP PeakFit (Axon Instruments). LTP was measured as a change in evoked field potential amplitude.Baseline responses were monitored at 0.05 Hz for 30 min with a stimulus intensity of 40%–50% of maximum fEPSP before LTP induction. Terazosin (10 µM) was superfused for 15 min, and then LTP was elicited by three tetanus trains (100 Hz × 1 sec, 3 min ITI) with the same intensity and pulse duration as the baseline stimuli. In one experiment, picrotoxin (PTX; 75 µM) was present in the perfusion solution to block fast GABAergic signaling.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号