首页 | 本学科首页   官方微博 | 高级检索  
     


Sorting out categories: Incremental learning of category structure
Authors:Michael Diaz  Brian H. Ross
Affiliation:(1) University of Leuven, Leuven, Belgium;(2) Department of Psychology, Tiensestraat 102, B-3000 Leuven, Belgium;
Abstract:Two experiments examine how inferences might promote unsupervised and incremental category learning. Many categories have members related through overall similarity (e.g., a family resemblance structure) rather than by a defining feature. However, when people are asked to sort category members in a category construction task, they often do so by partitioning on a single feature. Starting from an earlier result showing that pairwise inferences increase family resemblance sorting (Lassaline & Murphy, 1996), we examine how these inferences lead to learning the family resemblance structure. Results show that the category structure is learned incrementally. The pairwise inferences influence participants’ weightings of feature pairs that were specifically asked about, which in turn affects their sorting. The sorting then allows further learning of the categorical structure. Thus, the inferences do not directly lead learners to the family resemblance structure, but they do provide a foundation to build on as the participants make additional judgments.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号