首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Task specificity and neural adaptations after balance learning in young adults
Institution:3. Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, Pécs, Hungary;4. Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
Abstract:BackgroundOnly 30 min of balance skill training can significantly improve behavioral and neuromuscular outcomes. However, it is unclear if such a rapidly acquired skill is also retained and transferred to other untrained balance tasks.Research questionWhat are the effects of a single balance training session on balance skill acquisition, retention, and transferability and on measures of neural plasticity examined by transcranial magnetic brain stimulation (TMS) and inter-muscular coherence?MethodsHealthy younger adults (n = 36, age 20.9, 18 M) were randomly assigned to: Balance training (BT); Active control (cycling training, CT) or non-active control (NC) and received a 20-min intervention. Before, immediately and ~ 7 days after the interventions, we assessed performance in the trained wobble board task, untrained static standing tasks and dynamic beam walking balance tasks. Underlying neural plasticity was assessed by tibialis anterior motor evoked potential, intracortical facilitation, short-interval intracortical inhibition and long-interval intracortical inhibition using TMS and by inter-muscular coherence.ResultsBT, but not CT (18%, d = 0.32) or NC (−1%, d = −0.02), improved balance performance in the trained, wobble board task by 207% (effect size d = 2.12). BT retained the acquired skill after a 1-week no-training period (136%, d = 1.57). No changes occurred in 4 measures of balance beam walking, in 8 measures of static balance, in 8 measures of intermuscular coherence, and in 4 TMS measures of supra-spinal plasticity (all p > 0.05).SignificanceHealthy young adults can learn a specific balance skill very rapidly but one should be aware that while such improvements were retained, the magnitude of transfer (32%, d = 0.94) to other balancing skills was statistically not significant. Additional studies are needed to determine the underlying neural mechanisms of rapid balance skill acquisition, retention, and transfer.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号