首页 | 本学科首页   官方微博 | 高级检索  
     


On equivariance and invariance of standard errors in three exploratory factor models
Authors:Ke-Hai Yuan  Peter M. Bentler
Affiliation:(1) Department of Psychology, University of North Texas, PO Box 311280, 76203-1280 Denton, TX;(2) University of California, Los Angeles
Abstract:Current practice in factor analysis typically involves analysis of correlation rather than covariance matrices. We study whether the standardz-statistic that evaluates whether a factor loading is statistically necessary is correctly applied in such situations and more generally when the variables being analyzed are arbitrarily rescaled. Effects of rescaling on estimated standard errors of factor loading estimates, and the consequent effect onz-statistics, are studied in three variants of the classical exploratory factor model under canonical, raw varimax, and normal varimax solutions. For models with analytical solutions we find that some of the standard errors as well as their estimates are scale equivariant, while others are invariant. For a model in which an analytical solution does not exist, we use an example to illustrate that neither the factor loading estimates nor the standard error estimates possess scale equivariance or invariance, implying that different conclusions could be obtained with different scalings. Together with the prior findings on parameter estimates, these results provide new guidance for a key statistical aspect of factor analysis.We gratefully acknowledge the help of the Associate Editor and three referees whose constructive comments lead to an improved version of the paper. This work was supported by National Institute on Drug Abuse Grants DA01070 and DA00017 and by the University of North Texas Faculty Research Grant Program.
Keywords:maximum likelihood  augmented information matrix  canonical rotation  varimax rotation  standard error  scale equivariance
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号