首页 | 本学科首页   官方微博 | 高级检索  
   检索      


From data to phenomena and back again: computer-simulated signatures
Authors:Eran Tal
Institution:(1) Department of Physics Unit 3046, University of Connecticut, 2152 Hillside Road, 06269-3046 Storrs, CT, USA
Abstract:This paper draws attention to an increasingly common method of using computer simulations to establish evidential standards in physics. By simulating an actual detection procedure on a computer, physicists produce patterns of data (‘signatures’) that are expected to be observed if a sought-after phenomenon is present. Claims to detect the phenomenon are evaluated by comparing such simulated signatures with actual data. Here I provide a justification for this practice by showing how computer simulations establish the reliability of detection procedures. I argue that this use of computer simulation undermines two fundamental tenets of the Bogen–Woodward account of evidential reasoning. Contrary to Bogen and Woodward’s view, computer-simulated signatures rely on ‘downward’ inferences from phenomena to data. Furthermore, these simulations establish the reliability of experimental setups without physically interacting with the apparatus. I illustrate my claims with a study of the recent detection of the superfluid-to-Mott-insulator phase transition in ultracold atomic gases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号