Abstract: | The present experiments aimed at separating the impact stimulus and response predictions have on serial learning and performance in SRT tasks. In Experiment 1, a unique transition between two of four responses in an otherwise random response sequence was triggered by ambiguous stimulus transitions, allowing local response predictions but no stimulus predictions. The data indicated explicit transition knowledge and strong performance benefits. In Experiments 2 and 3, unique transitions between two of four stimuli in otherwise random stimulus sequences allowed local stimulus predictions under conditions of ambiguous response transitions. The data indicated fragmentary explicit transition knowledge but no performance effects. Experiments 4a and 4b reveal that the inefficacy of the unique stimulus transitions in Experiments 2 and 3 was presumably due to the fact that the stimuli differed with respect to conjunctions of response relevant and response irrelevant features which participants did not have to attend. However, although in Experiments 4a and 4b unique transitions between response relevant stimuli were applied, substantial explicit transition knowledge but only marginal performance effects resulted. It is argued i) that in SRT tasks learning mechanisms are addressed that primarily strive for reliable predictions of forthcoming responses and ii) that for these mechanisms to work the predictors have to be attended. Response transitions are easily learned and used because both criteria are fulfilled. In contrast, pure stimulus transitions are learned only if the predictive stimuli are attended, and learned stimulus transitions become effective only to the extent that the predicted stimuli specify the required responses. |