The effect of zolpidem on targeted memory reactivation during sleep |
| |
Authors: | Julia Carbone,Carlos Bibiá n,Patrick Reischl,Jan Born,Cecilia Forcato,Susanne Diekelmann |
| |
Abstract: | According to the active system consolidation theory, memory consolidation during sleep relies on the reactivation of newly encoded memory representations. This reactivation is orchestrated by the interplay of sleep slow oscillations, spindles, and theta, which are in turn modulated by certain neurotransmitters like GABA to enable long-lasting plastic changes in the memory store. Here we asked whether the GABAergic system and associated changes in sleep oscillations are functionally related to memory reactivation during sleep. We administered the GABAA agonist zolpidem (10 mg) in a double-blind placebo-controlled study. To specifically focus on the effects on memory reactivation during sleep, we experimentally induced such reactivations by targeted memory reactivation (TMR) with learning-associated reminder cues presented during post-learning slow-wave sleep (SWS). Zolpidem significantly enhanced memory performance with TMR during sleep compared with placebo. Zolpidem also increased the coupling of fast spindles and theta to slow oscillations, although overall the power of slow spindles and theta was reduced compared with placebo. In an uncorrected exploratory analysis, memory performance was associated with slow spindle responses to TMR in the zolpidem condition, whereas it was associated with fast spindle responses in placebo. These findings provide tentative first evidence that GABAergic activity may be functionally implicated in memory reactivation processes during sleep, possibly via its effects on slow oscillations, spindles and theta as well as their interplay.Sleep supports the consolidation of newly acquired memories (Mednick et al. 2011; Klinzing et al. 2019). According to the active system consolidation theory, new memories and their associated neuronal activation patterns become spontaneously reactivated (replayed) following learning in the sleeping brain (Wilson and McNaughton 1994; Diekelmann and Born 2010). These reactivations allow for the redistribution and integration of the memory representations from hippocampal to neocortical sites for long-term storage (Rasch and Born 2007; Klinzing et al. 2019). Memory reactivation during sleep has been proposed to rely on the synchronized interplay of electrophysiological oscillations characteristic of non–rapid eye movement (NREM) sleep, mainly neocortical slow oscillations (SOs, <1 Hz), thalamocortical spindles (9–15 Hz), and hippocampal ripples (80–200 Hz) (Mölle et al. 2009; Staresina et al. 2015; Helfrich et al. 2018; Ngo et al. 2020). Particularly, sleep spindles and their intricate phase coupling to SO have been suggested to be mechanistically involved in memory consolidation processes during sleep (Ulrich 2016; Antony et al. 2019). It has been proposed that memories become reinstated by spindle events, specifically during the up-state of slow oscillations, allowing for the flow of information between different brain sites as well as the induction of lasting structural and functional plastic changes in the learning-associated neuronal networks (Rosanova and Ulrich 2005; Peyrache and Seibt 2020). In addition to sleep spindles, neocortical and hippocampal theta activity (4–8 Hz) is also phase-locked to SO during NREM sleep (Gonzalez et al. 2018; Cox et al. 2019; Krugliakova et al. 2020), and this coupling has been related to memory consolidation during sleep (Schreiner et al. 2018).A number of neuromodulators seem to be involved in the generation of sleep spindles, SO and associated memory processing, most notably GABA (γ-aminobutyric acid), which is the major inhibitory neurotransmitter (Lancel 1999; Ulrich et al. 2018). Sleep spindles and sleep-dependent memory processing can be boosted by targeting the GABAergic system pharmacologically (Mednick et al. 2013). Zolpidem is one of the most frequently used drugs in this regard, binding to GABAA receptors at the same location as benzodiazepines, thereby acting as a GABAA receptor agonist (Lemmer 2007). Zolpidem increases the time spent in slow-wave sleep (SWS) and reduces the amount of rapid eye movement (REM) sleep (Kanno et al. 2000; Uchimura et al. 2006; Zhang et al. 2020). Zolpidem also increases the density and power of sleep spindles (Dijk et al. 2010; Lundahl et al. 2012; Mednick et al. 2013; Niknazar et al. 2015; Zhang et al. 2020) as well as the coupling of spindles to SO (Niknazar et al. 2015; Zhang et al. 2020), and it was further found to enhance declarative memory consolidation during sleep, with postsleep performance improvements being associated with higher spindle density and spindle power as well as with SO–spindle coupling (Kaestner et al. 2013; Mednick et al. 2013; Zhang et al. 2020).However, it remains unclear whether the changes in sleep stages, sleep spindles, and SO–spindle coupling after pharmacological manipulation with zolpidem are functionally related to the mechanisms underlying sleep-dependent memory consolidation such as memory reactivation. Over the last few years, targeted memory reactivation (TMR) has been increasingly applied to manipulate memory reactivation during sleep experimentally by presenting learning-associated reminder cues like odors or sounds (Oudiette and Paller 2013; Hu et al. 2020; Klinzing and Diekelmann 2020). TMR biases sleep-related neuronal replay events toward the reactivated memory contents (Lewis and Bendor 2019) and enhances subsequent recall performance (Rudoy et al. 2009; Diekelmann et al. 2011; Schreiner et al. 2015; Cairney et al. 2018). Although a few studies observed modulations of SOs (Rihm et al. 2014), sleep spindles (Cox et al. 2014), and SO–spindle coupling (Bar et al. 2020) with TMR during sleep, studies on the role of specific neurotransmitters and particularly on the role of GABAergic neurotransmission and associated changes in sleep oscillations for targeted memory reactivation are entirely lacking. One previous study tested the effect of pharmacologically increased GABAergic activity by administering the benzodiazepine clonazepam after cued reactivation of a declarative memory during wakefulness (Rodríguez et al. 2013). Clonazepam increased memory performance when it was administered after reactivation with an incomplete reminder cue, suggesting that increasing GABAergic neurotransmission may enhance the restabilization of reactivated declarative memories in humans during wakefulness.In the present study, we tested the effect of modulating GABAergic activity with zolpidem on targeted memory reactivation during sleep and associated changes in sleep spindles as well as SO–spindle and SO–theta coupling. We hypothesized that zolpidem enhances the beneficial effects of targeted memory reactivation on memory performance and that this enhancement is associated with increases in spindle density, spindle power, SO–spindle coupling, and possibly SO–theta coupling, and the amount of SWS. Participants were trained on a memory task including 30 sound–word associations in the evening (Forcato et al. 2020) and received an oral dose of 10 mg zolpidem (n = 11) or placebo (n = 11) after training before a full night of sleep in the sleep lab (). During the night, incomplete reminder cues (sounds + first syllable of the associated words) were played again via in-ear headphones during SWS. The next morning, participants were trained on an interference memory task to probe the stability of the original memory, which was tested 30 min later.Open in a separate windowExperimental design and memory task. (A) All subjects took part in a training session at ∼22.30, were administered with placebo (n = 11) or 10 mg of zolpidem (n = 11) before going to bed at 23:00, and received targeted memory reactivation during the first SWS period. After ∼8 h of sleep, in the morning, subjects learned an interference task and were tested on the original memory task in a testing session 30 min after the interference task. (B) Training: First, subjects were presented with 30 sound–word associations for learning. For each association, the sound was presented first for 2900 msec. The sound then continued accompanied by the word written on the screen and spoken aloud for 1500 msec. After a 4000-msec break, the next association was presented in the same way. After all associations were presented once, participants completed an immediate cued recall test. For each association, the sound was presented for 2900 msec. The sound then continued accompanied by the first syllable of the associated word for 1500 msec. Participants were then given 5000 msec to say the complete word aloud (sound continued during the entire period). Independently of their response, the correct answer was then presented on the screen and via headphones for 1500 msec. Reactivation: Each sound was first presented alone for an average of 2900 msec; the sound then continued accompanied by the first syllable of each word for another 1500 msec. After a 7000-msec break, the next sound–syllable pair was presented until all 30 pairs had been presented once. Testing: Each sound was presented for 500 msec and then the sound continued and subjects had 5000 msec to say the associated word aloud. After a break of 4000 msec, the procedure continued for the rest of the 30 associations. Adapted from Forcato et al. (2020). |
| |
Keywords: | |
|
|