首页 | 本学科首页   官方微博 | 高级检索  
     


Encoding Modal Logics in Logical Frameworks
Authors:Avron  Arnon  Honsell  Furio  Miculan  Marino  Paravano  Cristian
Affiliation:(1) Department of Computer Science, Tel-Aviv University Tel-Aviv, Israel;(2) Dipartimento di Matematica e, Informatica Università, di Udine Via delle Scienze 206, I-33100 Udine, Italy
Abstract:We present and discuss various formalizations of Modal Logics in Logical Frameworks based on Type Theories. We consider both Hilbert- and Natural Deduction-style proof systems for representing both truth (local) and validity (global) consequence relations for various Modal Logics. We introduce several techniques for encoding the structural peculiarities of necessitation rules, in the typed lambda-calculus metalanguage of the Logical Frameworks. These formalizations yield readily proof-editors for Modal Logics when implemented in Proof Development Environments, such as Coq or LEGO.
Keywords:Hilbert and Natural-Deduction proof systems for Modal Logics  Logical Frameworks  Typed   /content/tt1l27542688v773/xxlarge955.gif"   alt="  lambda"   align="  BASELINE"   BORDER="  0"  >-calculus  Proof Assistants
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号