首页 | 本学科首页   官方微博 | 高级检索  
     


Studying the neural bases of prism adaptation using fMRI: A technical and design challenge
Authors:Janet H. Bultitude  Alessandro Farnè  Romeo Salemme  Danielle Ibarrola  Christian Urquizar  Jacinta O’Shea  Jacques Luauté
Affiliation:1.ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, University Claude Bernard Lyon I,Lyon,France;2.Department of Psychology,University of Bath,Bath,UK;3.Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences,University of Oxford,Oxford,UK;4.Hospices Civils de Lyon, H?pital Henry Gabrielle, Mouvement et Handicap, Neuro-immersion,Lyon,France;5.Centre d’Exploration et de Recherche Médicale par Emission de Positons, Imagerie du vivant,Bron cedex,France
Abstract:Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号