首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient spatio-temporal data mining with GenSpace graphs
Authors:Howard J. Hamilton   Liqiang Geng   Leah Findlater  Dee Jay Randall
Affiliation:Department of Computer Science, University of Regina, Regina, SK, Canada S4S 0A2
Abstract:We describe a method for spatio-temporal data mining based on GenSpace graphs. Using familiar calendar and geographical concepts, such as workdays, weeks, climatic regions, and countries, spatio-temporal data can be aggregated into summaries in many ways. We automatically search for a summary with a distribution that is anomalous, i.e., far from user expectations. We repeatedly ranking possible summaries according to current expectations, and then allow the user to adjust these expectations. We also choose a propagation path in the GenSpace subgraph that reduces the storage and time costs of the mining process.
Keywords:Data mining   Knowledge discovery   Spatio-temporal data mining   Spatial data mining   Temporal data mining   Summarization   Domain generalization graphs   GenSpace graphs
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号