首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Gaze direction affects walking speed when using a self-paced treadmill with a virtual reality environment
Institution:1. Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy;2. Department of Science for the Quality of Life, University of Bologna, Italy
Abstract:BackgroundIn a previous study it was observed that participants increase their walking speed during a dual task while walking on a self-paced treadmill in a virtual reality (VR) environment (Gait Real time Analysis Interactive Lab (GRAIL)). This observation is in contrast with the limited resources hypothesis, which suggests walking speed of healthy persons to decrease when performing a cognitive dual task.AimThe aim of the present study was therefore to determine whether the cognitive demand of the task, an aroused feeling, discrepancy in optic flow or a change in gaze direction caused participants to walk faster in this computer assisted rehabilitation environment.MaterialsThe GRAIL included a self-paced treadmill, a motion-capture system and synchronized VR environments.MethodsThirteen healthy young adults (mean age 21.6 ± 2.5) were included in this study. Participants walked on the self-paced treadmill while seven different intervention conditions (IC) were offered. Prior to each IC, a control condition (CC) was used to determine the natural self-selected walking speed. Walking speed during the last 30 s of each IC was compared with the walking speed during the last 30 s of the preceding CC.ResultsResults show that the height on which a visual task was presented in the VR environment, influenced walking speed. Participants walked faster when gaze was directed above the focus of expansion.SignificanceThese findings contribute to a further understanding of the differences between walking in a real life environment or computer assisted rehabilitation environment. When analyzing gait on a self-paced treadmill in the future, one must be attentive where to place a visual stimulus in the VR environment.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号