首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling asynchrony in automatic speech recognition using loosely coupled hidden Markov models
Authors:H.J. Nock  S.J. Young
Abstract:Hidden Markov models (HMMs) have been successful for modelling the dynamics of carefully dictated speech, but their performance degrades severely when used to model conversational speech. Since speech is produced by a system of loosely coupled articulators, stochastic models explicitly representing this parallelism may have advantages for automatic speech recognition (ASR), particularly when trying to model the phonological effects inherent in casual spontaneous speech. This paper presents a preliminary feasibility study of one such model class: loosely coupled HMMs. Exact model estimation and decoding is potentially expensive, so possible approximate algorithms are also discussed. Comparison of one particular loosely coupled model on an isolated word task suggests loosely coupled HMMs merit further investigation. An approximate algorithm giving performance which is almost always statistically indistinguishable from the exact algorithm is also identified, making more extensive research computationally feasible.
Keywords:Automatic speech recognition  Pronunciation modelling  Loosely coupled hidden Markov models  Variational approximation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号