首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Complementary roles for the amygdala and hippocampus during different phases of appetitive information processing
Authors:Holahan Matthew R
Institution:Department of Psychology, McGill University, Montreal, QC, Canada. m-holahan@northwestern.edu
Abstract:Evidence collected from rodent models of memory storage suggests that rapid forms of learning engage the involvement of multiple brain regions each of which may participate in a different component of information processing. The present study used temporary inactivation of the amygdala and hippocampus during different phases of information processing on a one-trial appetitive-conditioning task to examine how these two regions might participate in the storage of appetitive memories. Male Long Evans rats were chronically implanted into the amygdala or dorsal hippocampus and food deprived. Rats were trained on a radial maze conditioned cue preference task where training occurred in one 40-min session and testing took place 24 h later. The amygdala or hippocampus was inactivated separately with muscimol (50 ng/microl) injected immediately before or after training, or immediately before testing. Saline-injected rats displayed a conditioned preference by spending more time in the arm that previously contained food than in the arm that did not contain food. Muscimol injected into the amygdala before training or testing blocked the conditioned preference. Muscimol injected into the hippocampus immediately after training blocked the conditioned preference. These results suggest that the processing of memories may require multiple contributions from separate brain systems for at least short-term (24 h) storage. The resulting output from each system may converge on a similar downstream target to influence behavior.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号