首页 | 本学科首页   官方微博 | 高级检索  
     


Inquisitive Heyting Algebras
Authors:Punčochář   Vít
Affiliation:1.The Institute of Philosophy, Czech Academy of Sciences, Jilská 1, Prague, Czech Republic
;
Abstract:

In this paper we introduce a class of inquisitive Heyting algebras as algebraic structures that are isomorphic to algebras of finite antichains of bounded implicative meet semilattices. It is argued that these structures are suitable for algebraic semantics of inquisitive superintuitionistic logics, i.e. logics of questions based on intuitionistic logic and its extensions. We explain how questions are represented in these structures (prime elements represent declarative propositions, non-prime elements represent questions, join is a question-forming operation) and provide several alternative characterizations of these algebras. For instance, it is shown that a Heyting algebra is inquisitive if and only if its prime filters and filters generated by sets of prime elements coincide and prime elements are closed under relative pseudocomplement. We prove that the weakest inquisitive superintuitionistic logic is sound with respect to a Heyting algebra iff the algebra is what we call a homomorphic p-image of some inquisitive Heyting algebra. It is also shown that a logic is inquisitive iff its Lindenbaum–Tarski algebra is an inquisitive Heyting algebra.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号