Abstract: | Reaction-time and accuracy data obtained from studies of sentence verification have not been rich enough to answer certain important theoretical questions about structures and processes in human semantic memory. However, a new technique called speed-accuracy decomposition (Meyer, Irwin, Osman, & Kounios, 1986) may help solve this problem. The technique allows intermediate products of sentence verification to be analyzed more precisely. Three experiments with speed-accuracy decomposition indicate that verification processes produce useful partial information before they are completed. Such information appears to accumulate continuously at a rate whose magnitude depends on the degree of relatedness between semantic categories. This outcome is consistent with continuous computational (e.g., semantic-feature comparison) models of semantic memory. An analysis of reaction-time minima suggests that a discrete all-or-none search process may also contribute at least occasionally to sentence verification. Further details regarding the nature of these processes and the memory structures on which they operate can be inferred from additional results obtained through speed-accuracy decomposition. |