首页 | 本学科首页   官方微博 | 高级检索  
     

多维项目反应理论补偿性模型参数估计:基于广义回归神经网络集合
引用本文:王鹏,孟维璇,朱干成,张登浩,张利会,董一萱,司英栋. 多维项目反应理论补偿性模型参数估计:基于广义回归神经网络集合[J]. 心理学探新, 2019, 0(3): 244-249
作者姓名:王鹏  孟维璇  朱干成  张登浩  张利会  董一萱  司英栋
作者单位:(1.山东师范大学心理学院,济南 250358; 2.中国人民大学心理学系,北京 100872; 3.中国人民大学心理学系实验室,北京 100872)
摘    要:运用广义回归神经网络(GRNN)方法对小样本多维项目反应理论(MIRT)补偿性模型的项目参数进行估计,尝试解决传统参数估计方法样本数量要求较大的问题。MIRT双参数Logistic补偿模型被设置为二级计分的二维模型。首先,模拟二维能力参数、项目参数值与考生作答矩阵。其次,把通过主成分分析得到的前两个因子在每个题目上的载荷作为区分度的初始值以及题目通过率作为难度的初始值,这两个指标的初始值作为神经网络的输入。集成100个神经网络,其输出值的均值作为MIRT的项目参数估计值。最后,设置2×2种(能力相关水平:0.3和0.7; 两种估计方法:GRNN和MCMC方法)实验处理,对GRNN和MCMC估计方法的返真性进行比较。结果表明,小样本的情况下,基于GRNN集成方法的参数估计结果优于MCMC方法。

关 键 词:多维项目反应理论  补偿性模型  广义回归神经网络  参数估计

 Compensatory MIRT Model Parameter Estimation:Based on Generalized Regression Neural Networks Ensemble
Wang Peng1,Meng Weixuan1,Zhu Gancheng1,Zhang Denghao2,' target='_blank'>3,Zhang Lihui1,Dong Yixuan1,Si Yingdong1.  Compensatory MIRT Model Parameter Estimation:Based on Generalized Regression Neural Networks Ensemble[J]. Exploration of Psychology, 2019, 0(3): 244-249
Authors:Wang Peng1  Meng Weixuan1  Zhu Gancheng1  Zhang Denghao2  ' target='_blank'>3  Zhang Lihui1  Dong Yixuan1  Si Yingdong1
Affiliation:(1.School of Psychology,Shandong Normal University,Jinan 250358; 2.The Department of Psychology,Renmin University of China,Beijing 100872; 3.The Laboratory of the Department of Psychology,Renmin University of China,Beijing 100872)
Abstract:Estimating compensatory MIRT model item parameters with Generalized Regression Neural Networks Method(GRNN)under the condition of small sample.It is a tentative solution for the problem of conventional parameter estimation methods needing large sample.Multidimensional two-parameter logistic model is set the two-dimension binary model up.Firstly,latent traits parameters,item parameters and response matrices aregenerated examinees' based on two-dimension model with computer simulation.Then,the load of the first two factors obtained by principal component analysis on each topic is taken as the initial value of the item discrimination parameters and the passing rate as the initial value of the item difficulty parameters.And they are taken as the input of the neural network.Train 100 neural networks,and take the mean of their output as the estimated value of MIRT's item parameters.Finally,compare the parameter recovery of the GRNN and MCMC estimation methods by 2×2(latent traits correlation level:0.3 and 0.7; estimation methods:GRNN and MCMC)experimental design.The results show that GRNN ensemble method could get better parameter estimate than MCMC method in the case of small sample.
Keywords: Multidimensional Item Response Theory   compensatory MIRT model   Generalized Regression Neural Networks   parameter estimation
本文献已被 CNKI 等数据库收录!
点击此处可从《心理学探新》浏览原始摘要信息
点击此处可从《心理学探新》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号