首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The amygdala is not necessary for unconditioned stimulus inflation after Pavlovian fear conditioning in rats
Authors:Christine A Rabinak  Caitlin A Orsini  Joshua M Zimmerman  Stephen Maren
Institution:1.Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, USA;;2.Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1043, USA
Abstract:The basolateral complex (BLA) and central nucleus (CEA) of the amygdala play critical roles in associative learning, including Pavlovian conditioning. However, the precise role for these structures in Pavlovian conditioning is not clear. Recent work in appetitive conditioning paradigms suggests that the amygdala, particularly the BLA, has an important role in representing the value of the unconditioned stimulus (US). It is not known whether the amygdala performs such a function in aversive paradigms, such as Pavlovian fear conditioning in rats. To address this issue, Experiments 1 and 2 used temporary pharmacological inactivation of the amygdala prior to a US inflation procedure to assess its role in revaluing shock USs after either overtraining (Experiment 1) or limited training (Experiment 2), respectively. Inactivation of the BLA or CEA during the inflation session did not affect subsequent increases in conditioned freezing observed to either the tone conditioned stimulus (CS) or the conditioning context in either experiment. In Experiment 3, NBQX infusions into the BLA impaired the acquisition of auditory fear conditioning with an inflation-magnitude US, indicating that the amygdala is required for associative learning with intense USs. Together, these results suggest that the amygdala is not required for revaluing an aversive US despite being required for the acquisition of fear to that US.Pavlovian fear conditioning in rats is a behavioral model used to investigate the neurobiology underlying the development and maintenance of fear learning and memory (Grillon et al. 1996; LeDoux 1998, 2000; Bouton et al. 2001; Maren 2001b, 2005; Kim and Jung 2006). In this model, an innocuous conditioned stimulus (CS), such as a tone, is paired with an aversive unconditioned stimulus (US), such as a footshock. After one or more pairings, the rat learns that the CS predicts the US. As a consequence, CS presentations alone elicit a conditioned fear response (CR), which includes increases in heart rate, arterial blood pressure, hypoalgesia, potentiated acoustic startle, stress hormone release, and freezing (somatomotor immobility).The amygdala has been identified as one of the major regions in which fear memories are encoded and stored. Within the amygdala, the basolateral complex of the amygdala (BLA; consisting of the lateral, basolateral, and basomedial nuclei) and the central nucleus of the amygdala (CEA) receive convergent CS and US information and are involved in the acquisition of fear memories (LeDoux 1998, 2000; Fendt and Fanselow 1999; Davis and Whalen 2001; Maren 2001b; Schafe et al. 2001; Fanselow and Gale 2003; Wilensky et al. 2006; Zimmerman et al. 2007). In addition, the CEA has an important role in the expression of fear CRs (Fendt and Fanselow 1999; LeDoux 2000; Davis and Whalen 2001; Maren 2001b; Fanselow and Gale 2003). In support of this, many studies have shown that either permanent or temporary lesions of the BLA or CEA prevent the acquisition and/or expression of fear memories (Helmstetter 1992; Helmstetter and Bellgowan 1994; Campeau and Davis 1995; Maren et al. 1996a,b; Killcross et al. 1997; Muller et al. 1997; Walker and Davis 1997; Cousens and Otto 1998; Maren 1998, 1999, 2001a,b; Wilensky et al. 1999, 2000, 2006; Goosens and Maren 2001, 2003; Nader et al. 2001; Fanselow and Gale 2003; Gale et al. 2004; Koo et al. 2004; Zimmerman et al. 2007).In addition to its role in encoding CS–US associations during conditioning, recent work suggests that the amygdala is also involved in representing properties of the US itself. For example, temporary or permanent lesions of the BLA reduce both decrements in conditioned responding after devaluation of a food US (Hatfield et al. 1996; Killcross et al. 1997; Blundell et al. 2001; Balleine et al. 2003; Everitt et al. 2003; Pickens et al. 2003; Holland 2004) and increments in conditional responding after inflation of a shock US (Fanselow and Gale 2003). Moreover, recent electrophysiological studies in primates indicate that amygdala neurons represent the value of both aversive and appetitive outcomes (Paton et al. 2006; Belova et al. 2007, 2008; Salzman et al. 2007). These studies suggest that one function of the BLA is to represent specific properties of biologically significant events, such as the food or shock USs that are typically used in Pavlovian conditioning paradigms. By this view, the BLA may represent specific sensory properties of USs that shape the nature of learned behavioral responses to the US (Balleine and Killcross 2006) and allow CSs to gain access to the incentive value of the US (Everitt et al. 2003).In contrast to this view, we recently reported that rats with neurotoxic BLA lesions exhibit normal US revaluation after Pavlovian fear conditioning (Rabinak and Maren 2008). In this study, auditory fear conditioning (75 CS–US trials) with a moderate footshock (1 mA) was followed by several exposures (five US-alone trials) to an intense footshock (3 mA) during an inflation session. Both intact rats and rats with BLA lesions exhibit a robust increase in conditional freezing to the auditory CS during a subsequent retention test (Rabinak and Maren 2008). Control experiments suggested that this was due to a revaluation of the US with which the CS was associated, rather than nonassociative sensitization of fear engendered by exposure to intense shock. These data reveal that the BLA may not be necessary for representing properties of shock USs during Pavlovian fear conditioning. To address these issues further, we have examined the consequence of reversible pharmacological manipulations of the amygdala during US inflation on conditional fear responses established with either extensive or limited training.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号