首页 | 本学科首页   官方微博 | 高级检索  
     


Decomposability of the Finitely Generated Free Hoop Residuation Algebra
Authors:Marta A. Zander
Affiliation:(1) Departamento de Matemàtica, Universidad Nacional del Sur, Av. Alem 1253, Bahìa Blanca, Argentina
Abstract:In this paper we prove that, for n > 1, the n-generated free algebra $$F_{{mathcal{V}}}(n)$$ in any locally finite subvariety $${mathcal{V}}$$ of HoRA can be written in a unique nontrivial way as Ł2 × A′, where A′ is a directly indecomposable algebra in $${mathcal{V}}$$ . More precisely, we prove that the unique nontrivial pair of factor congruences of $$F_{{mathcal{V}}}(n)$$ is given by the filters $$[{mathcal{J}})$$ and $$F_mathcal {V}(n) - (mathcal {J}]$$ , where the element $${mathcal {J}}$$ is recursively defined from the term $$j(x, y) =(((x rightarrow y) rightarrow y) rightarrow x) rightarrow x$$ introduced by W. H. Cornish. As an additional result we obtain a characterization of minimal irreducible filters of $$F_{{mathcal{V}}}(n)$$ in terms of its coatoms. Presented by Daniele Mundici
Keywords:Hoop residuation algebras  free algebras  decomposability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号