首页 | 本学科首页   官方微博 | 高级检索  
     


Localizing complex neural circuits with MEG data
Authors:P. Belardinelli  L. Ciancetta  V. Pizzella  C. Del Gratta  G. L. Romani
Affiliation:(1) ITAB, Institute for Advanced Biomedical Technologies, “G. D’Annunzio” University Foundation, Chieti, Italy;(2) Department of Clinical Sciences and Biomedical Imaging, University of Chieti, Chieti, Italy
Abstract:During cognitive processing, the various cortical areas, with specialized functions, supply for different tasks. In most cases then, the information flows are processed in a parallel way by brain networks which work together integrating the single performances for a common goal. Such a step is generally performed at higher processing levels in the associative areas. The frequency range at which neuronal pools oscillate is generally wider than the one which is detectable by bold changes in fMRI studies. A high time resolution technique like magnetoencephalography or electroencephalography is therefore required as well as new data processing algorithms for detecting different coherent brain areas cooperating for one cognitive task. Our experiments show that no algorithm for the inverse problem solution is immune from bias. We propose therefore, as a possible solution, our software LOCANTO (LOcalization and Coherence ANalysis TOol). This new package features a set of tools for the detection of coherent areas. For such a task, as a default, it employs the algorithm with best performances for the neural landscape to be detected. If the neural landscape under attention involves more than two interacting areas the SLoreta algorithm is used. Our study shows in fact that SLoreta performance is not biased when the correlation among multiple sources is high. On the other hand, the Beamforming algorithm is more precise than SLoreta at localizing single or double sources but it gets a relevant localization bias when the sources are more than three and are highly correlated.
Keywords:Magnetoencephalography  Inverse problem  Spatial filters  Source reconstruction
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号