首页 | 本学科首页   官方微博 | 高级检索  
     


Discovery algorithms for hierarchical relations
Authors:Price  Lewis C.  Dayton  C. Mitchell  Macready   George B.
Affiliation:(1) University of Maryland, USA;(2) Macro Systems, Inc., 8630 Fenton Street, Suite 300, 20910 Silver Spring, Maryland
Abstract:Two algorithms based on a latent class model are presented for discovering hierarchical relations that exist among a set ofK dichotomous items. The two algorithms, stepwise forward selection and backward elimination, incorporate statistical criteria for selecting (or deleting) 0–1 response pattern vectors to form the subset of the total possible 2k vectors that uniquely describe the hierarchy. The performances of the algorithms are compared, using computer-constructed data, with those of three competing deterministic approaches based on ordering theory and the calculation of Phi/Phi-max coefficients. The discovery algorithms are also demonstrated on real data sets investigated in the literature.
Keywords:probabilistic model  latent class model  hierarchical relations  latent structure analysis  discovery algorithms
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号